FREQUENCY CHARACTERISTICS OF A LAMINAR FLAME

V. A. Sklyarov and V. I. Furletov UDC 536.46:533.6

A theoretical study is made of the effect of harmonic pressure oscillations on a flat laminar
flame. Frequency characteristics of the flames are obtained at amplitudes of the pressure
oscillations which are small compared with the average pressure. It is established that in
a broad range of frequencies the disturbances in the integral rate of heat release occur in
phase with the pressure oscillations and depend weakly on the frequency.

1. The stability relative to acoustical vibrations of the gas of a system in which combustion occurs
depends in many cases on the reaction of the flame to the pressure disturbances.

Using the apparatus of the theory of automatic regulation, such a response (reaction) can be described
by the frequency characteristics of the flame. When the size of the combustion zone is much less than the
length of the sonic wave, an important frequency characteristic of the flame is the value G(w) = (S'/8¢)/(®'Dy),
where G(uw) represents a value analogous to the "interaction index" of Crocco [1]. It determines the reaction
of the integral rate of heat release S in the combustion zone to the harmonic pressure disturbances p' of
different frequency w

0
»

S=0Q 3 W (x) dx
where W(x) and Q are the volumetric rate and calorific effect of the chemical reaction, S; and p; are aver-
age values, and S' is the disturbance.

The frequency characteristics of flames are poorly studied. They are rarely introduced into theo-
retical constructions based on intuitive concepts {2, 3]. The purpose of the present work is to determine
the frequency characteristic G(w) for a flat model laminar flame front, whose behavior is described by the
thermal theory of Zel'dovich and Frank-Kamenetskii [4]. The problem is solved numerically using an elec-
tronic computer. The characteristic G(w) can be found by two methods: by direct integration of the original
equations with harmonic pressure disturbances and using transition functions. The statement of the prob-
lem for each of these methods is given below.

2. The propagation of a homogeneous laminar flame front is described by the system of equations

ap dpu du du dp
o T =% Pt =g
or aT \ ap a i) oT
Cp) (7+”W}=‘37 u“a%ﬁ;(xw)Jr(’W (2.1)
[oh oR\ 3 f AW p
W = kp* (1 — h)’ exp (— E/RT) (2.2)

Here p is the density, u is the velocity, p is the pressure, T is the gas temperature, h is the relative
weight concentration of the combustion products or the complcteness of conversion, x is the thermal con~
ductivity coefficient, D is the diffusion coefficient, y is the molecular weight of the components, R is the
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universal gas constant, ¢, is the specific heat capacity at constant pressure, W is the reaction rate, E is
the activation energy, v is the order of the chemical reaction (in the present work v =1 or 2), and kj is a
precxponential factor corresponding to the order of the reaction, i = v.

The Egs. (2.1) are valid on the assumptions that the specific heat capacities of the components of the
mixture are constant and equal, the transport coefficients are independent of the composition, the molecular
weights of the initial mixture and the combustion products are equal, and the effect of viscosity, thermo-
and barodiffusion, and radiant heat transport is neglected.

To simplify system (2.1) let us convert to the mass Lagrangian coordinates
¢ =\plnde @>0), t, —¢

and the dimensionless variables
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Here the subscript 0 corresponds to the stationary mode of propagation of the flame in the absence of
pressure disturbances, 1 corresponds to the initial mixture, and 2 to the combustion products. A dash on
top indicates that the value under consideration is dimensionless. The relationship between the parameters
tys ay» and uy is given by the Eqgs. (2.3)

G = Yo/ Collos ta = Fro / Pro€ o (2-3)

On the basis of the theory of Zel'dovich and Frank-Kamenetskii it is convenient to take u; in the form
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(2.4)

Neglecting the weak dependence of px and p%D on the temperature (px ~p?D ~T~%%) and using the equa-
tion of state, the condition of thermal balance Q =cp(Ty~Ty) (1-hyy), and the equation Dypy = Dyypyq, We ob-
tain

du gz = d/lac (1/p) (2.5)
Podu i ot — — dp / 3% (2.6)
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Herc and later we omit the dashes above the dimensionless variables; cy is the specific heat capacity
at constant volume.

In the variables selected the relative disturbance in the integral rate of heat release, which charac-
terizes the response of the flame to the pressure disturbances, is

©

§' =\ (F &1 —Fo(®)ds / \Fol®) d (2.11)
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The term containing 3p/07in Eq. (2.7) allows for the pressure variation in the flame front and the
periodic pressure oscillations in the gas. Since the kinetic energy of the gas motion during the propagation
of the flame is much less than its thermal energy we will neglect the component which allows for the pres-
sure variation in the flame front. We retain the component connected with the periodic pressure oscillations
since it is essential for the description of the flame propagation in a variable pressure field. The length of
the sound wave is assumed to be much greater than the width of the flame front, so the pressure disturbance
is taken as identical over the entire space. Only the density of the initial mixture, connected with the pres-
sure by the isentropic equation py = p{ Y, enters into Eqgs. (2.7) and (2.8). Consequently they can be solved
independently from Eqs. (2.5), (2.6), and (2.9).

Taking the pressure disturbance in the form p' = 6p cos Q7 (where 6p and  are the dimensionless
amplitude and angular frequency of the pressure oscillations, Q= wty), we take as the boundary conditions
the adiabatically disturbed stationary temperature distribution 4,(¢) and the undistributed stationary distri~
bution of the normalized completeness of conversion oy(¢). To determine the frequency characteristic of
the flame one must solve the problem

6\‘) ’
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BE =0 (E) +(m—1gy 0() =0, () for =0 (2.12)
bO=m—1g, ox)=1 for §=

() =m0, +(M—1)g, o(1)=0 for = 400

where n = (1+p’)(7’1)/7, while F is determined by Eq. (2.10).

The problem formulated describes both the stationary and the nonstationary modes of flame propaga-
tion. Because of the nonlinearity of the equations,the stationary oscillations in the integral rate of heat re-
lease prove to be anharmonic. These oscillations are expanded in a Fourier series and for the first har-
monic of the oscillations, which can be represented in the form

S’ = 4 (Q) exp (iQ7)

the amplitude-phase frequency characteristic is calculated as
G(Q)=A4(Q)/8p

This method requires large expenditures of machine time. Therefore it will only be used to verify
the applicability of the more economical method of determining the frequency characteristics from transi-
tion functions to the problem of finding the response of a flame to small pressure disturbances. The latter
method is developed for systems described by linear ordinary differential equations. According to this
method the frequency characteristic of a system is determined with the help of a Laplace transformation
from its response to a single jump in the input parameter (i.e., from its transition function) [5].

< ay ,
0

Here H(7) is the transition function connected with S(7) by the equation H(7) = S8'/Ap, S' is determined

by Eq. (2.11), Ap is the size of the pressure jump, and #(7) = H(T) —=H(#0).

Equation (2.13) assumes that the principle of superposition is valid for the disturbances. Therefore
the present method is applicable only for small deviations from the stationary mode of flame propagation,
i.e., for small pressure disturbances. The allowable values of the pressure disturbances are not known
beforehand and are determined as a result of the numerical calculations by increasing the size of the pres-
sure disturbance to the point where marked changes develop in the form of the amplitude-phase frequency
characteristic.

To determine the trangition function let us examine the behavior of the flame front when 7> 0 after
application of the pressure jump p' = Ap e (7), where

1 for 120

“O=10 @ r<0
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b4 The arrival at the new stationary mode of flame propaga-~
tion is described by the equations

3.2

a0 . 0, 33 y 9%5 F

T =8V G T F G =Le(+ A G — 4 (2,14

2.0
The boundary conditions are taken analogously with the

first method [see Eq. (2.12)].

0.8

According to Eq. (2.13), to determine G(Q) it is sufficient
to know the behavior of H(r) up to the moment that the stationary
mode of flame propagation is established. The transitional pro-
cess was considered as ended when d In H (7) /dT = 0.01.

The stationary distributions of temperature Jy(¢) and completeness of conversion oy(¢), which are
used to set the boundary conditions (2.12), are found analogously to [6] by numerical integration of Egs.
(2.14) with Ap = 0. The initial conditions for the temperature and completeness of conversion are taken in
step form for 7 =0

Qo /e

) _‘f“’ll for £2§ ey 0 for §>&
YO=\0 g r<t

U for E<E,

where ¢4 is the coordinate of an arbitrary point sufficiently far from the origin of coordinates, and the bound-
ary conditions are chosen accordingly as

P(0) =G, 0() =0 for § =} o
G(1) =0, 0(0) =1 for &=0

The stationary mode of flame propagation was considered as reached when d In 8(7)/d7 <0.001. The
distributions #(£, 7) and g(¢, 7) at this moment were taken as the initial distributions Jy(¢) and oy(¢).

3. It follows from the equations and the boundary conditions (2.12) that the solution depends on the
parameters ag, g, %49, Le, v, and v. As an example let us calculate the frequency characteristics of a
flame with aq = 5, gy = 10.84, ¥4, = —8.67, Le =1, ¥ = 1.4, and a reaction order of » =1 or 2. In particular,
a hydrocarbon-air flame, for which E = 167.36 kd /mole (40 kcal/mole), Ty =375° K, Ty, = 1865° K, and v =
2, is such a flame. The transition functions for these flames, calculated for four values of the pressure
jump (Ap = 0.005, 0.01, 0.02, 0.04), are presented in Fig. 1. The value T/Tp is laid out along the abscissa,
where 7, is the relaxation time (it follows from the calculations that 7p~1 and 0.5 for » =1 and 2, respec-
tively). The form of the transition functions is practically independent of the amplitude of the pressure
disturbance. A slight difference is observed only at the starting times. Curve 1 corresponds to v =1 and
curve 2 tov = 2.

The initial sharp jump in the integral rate of heat release is explained by the increase in the chemical
reaction rate because of the adiabatic increase in temperature at the time 7 = 0. The subsequent drop is
caused by the restructuring of the front due to transport processes and is described approximately by an
exponential function. The new stationary mode of flame propagation is determined by the adiabatic dis-
turbances in the temperature and density of the initial mixture.

The amplitude—phase frequency characteristics of the flames calculated from the transition functions
are presented in Fig. 2. The real and imaginary parts of the function G(Q2) are laid out along the coordinate
axes. Curves 1, 2, and 3 pertain to a flame with v=1 while curves 4, 5, 6, and 7 pertain to a flame with v =
2. Curve 1 is obtained for pressure jumps of Ap = 0.005 and 0.01 and the other curves are obtained for
Ap = 0.02, 0.04, 0.005, 0.01, 0.02, and 0.04, respectively. The dimensionless frequencies are indicated near
the plotted points (2 = 2m/t;, where f is the dimensional frequency of the oscillations in Hz). A series of
points which were calculated directly by numerical integration of Egs. (2.12) for a harmonic pressure dis-
turbance with amplitude 6p = 0.04 is shown here by crosses for a flame with v = 2. Analogous calculations
were made for ép = 0.02 and 0.08 with Q = 100.

The point G(100) for &p = 0.02 coincides with the corresponding point presented in Fig. 2 while for
6p = 0.08 it is located somewhat below it. This is explained by the intensification in the nonlinearity of the
oscillations in the rate of heat release with an increase in the amplitude of the pressure disturbances; at
op = 0.08 the ratio of the amplitude of the second harmonic of the rate of heat release to the amplitude of
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the first harmonic is 0.2, while at §p = 0.02 and 0.04 the ratio is ~0.01. Hence it [ollows that with a de~
crease in the pressure disturbances the frequency characteristics obtained by the different methods con-
verge. The good agreement of the results of the calculations by the two methods shows that the amplitude-
phase frequency characteristic of a flame, which describes the stationary oscillations in the integral rate

of heat release for a harmonic disturbance which has a small amplitude, can be determined from the transi-
tion function.

The form of the frequency characteristics indicates that resonance properties of the flame are prac-
tically absent. The modulus G(2) grows monotonically with an increase in frequency.

The oscillations in the integral rate of heat release are caused by the oscillations in the chemical re~
action rate, which occur mainly because of the temperature variation in the reaction zone. As ©—0 the
relaxation time of the front becomes much less than the period of the oscillations. The distributions of
temperature and completeness of conversion which correspond to a front which propagates with constant
velocity through a mixture with the current values of temperature and density are established almost in-
stantly in the front. Because of this quasistationary nature of the flame propagation the temperature dis-
turbances in the chemical reaction zone are eqgual to its adiabatic disturbances in the original mixture: T{=
(“/—1)7'1p’pm'1T10. Outside the reaction zone the temperature disturbances T} in the combustion products
will be adiabatic, just as in the initial mixture: T} = (y—1)y~!p'pyg 1Ty (in the equations for T} and T} all
the values except v are dimensional and pyy = pyg)-

With an increase in the frequency the relaxation time of the front becomes considerably greater than
the period of the oscillations. The processes of transport and heat release have less and less effect on the
variation in gas temperature in an oscillation period, while the relation between the oscillations in pressure
and temperature approaches more and more toward an isentropic relation. The temperature of the mixture
in the reaction zone is close to the temperature Ty, of the combustion products, hence the temperature dis~
turbances in this zone will approach the value T} with an increase in frequency. Since Ty, > Ty, the tem-
perature disturbances in the chemical reaction zone at high frequencies are greater than at low frequencies.
The reaction rate increases with an increase in temperature and accordingly the response of the flame at
high frequencies is greater than at low frequencies.

It follows from Fig. 2 that the oscillations in the integral rate of heat release always lead the pres-
sure oscillations. The phasc shift between the oscillations in the rate of heat release and the pressure os-
cillations is explained by the phase shift between the temperature oscillations in the chemical reaction zone
and the pressure oscillations. The appearance of such a phase shift results from the fact that the tempera-
ture variation at some fixed point of the gas due to pressure oscillations is accompanied by a simultaneous
increase in the average temperature as it passes through the flame. Let us dwell on this point in more de-
tail. It will now be convenient to convert to dimensional values for the dependent variables p, p, and u.

Let us consider an idealized model of a flame which consists of a surtace of heat releasec and a Michel
son temperature profile in front of it

To(g, t) == Tyo + (Tag — T1o) exp [~ €,m (g — mt) / prodso)

where g =mt. We will assume that the mass propagation rate m of such a flame is constant. The surface
of heat release passes through the point with the coordinate g at the time t = q/m. The temperature T(qg, t)
at some fixed point of the gas with the coordinate q depends on the heating in the warmup zone of the flamec
and on the adiabatic compression or rarefaction in the pressure wave. If pressure disturbances are absent
for t < 0 the temperature disturbance is

t
il : P —1 1 d
(g, 0) = T (g, 0) = To(q, ) = 7= 2=\Tolg, ) 55 d&

o
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Hence the temperature disturbance at the surface of heat release is

1
’ —1 1 ¢ dp’
T () = 1o\ T mt, 0 - d
0

Let us change to the dimensionless independent variables T and ¢, assuming that uy = m/pyy in Eq. (2.3).
Taking the pressure disturbance in the form p' = 6p sin Qr, after integration we obtain

T — T
T o

Ty —T
HQexp(— r)}

T, (1) = Sp vt {Tm sin Qv + (cos QT + Qsin Q1) —

P1o i

The last term is connected with the transitional process of establishing the oscillations Tp (7). As
T—~wit is reduced to zero. The first two terms describe the established temperature oscillations, which
can be represented in the form

, 8p Y —1 10208 12
T (0 = T | L2 [ sin @o 4 )

¢ =arctg[(a, — 1) Q/ (1 + @), ag = T,0/ T)p >1 3.1)

From this it follows that the temperature oscillations at the surface of heat release always lead the
pressure oscillations (¢ > 0), and the amplitude of the oscillations Ty'(7) is a monotonically increasing func-
tion of the frequency.

We can give the rate of heat release at such an idealized flame front by the equation
F(q. t)=kp T exp(— E/ RT)8 ( — mi)

in which the dependence of the chemical reaction rate on the pressure and temperature is retained whereas
the concentration of the initial material at the surface of heat release itself is reduced to zero. Herek is
a proportionality coefficient and 6(q—mt) is the Dirac delta function. For the real and imaginary charac-
teristics we obtain

ReGy (@) = < 4 12! (%—ﬁm 1_?’92), Gy (@) = — Tl 0y, -2

The amplitude—phase frequency characteristic described by these equationsrepresentsa semicircle
located in the first quarter of the G((S2) plane. As Q— « the values Re G, and Im G, approach the values
calculated on the computer. The agreement of the general form of the function G;(f2) with the forms pre-
sented in Fig. 2 shows that the main reason for the dependence of the response of the flame on the frequency
of the oscillations is the dependence of the temperature disturbances in the chemical reaction zone on the
frequency. With an increase in the parameter ||, which is proportional to the ratio of the time the gas
remains in the entire flame front to the time it remains in the chemical reaction zone, the amplitude and
phase characteristics of the flame become more frequency-dependent.

The frequency characteristics obtained can be used in a limited frequency region. The condition §/A«
1 is equivalent to the condition Q<< 2nc,/upTn, where 6 is the width of the flame front, A is the length of the
sound wave, T is the dimensionless time the gas remains in the flame front, ¢4, is the speed of sound, and
up is the velocity of flame propagation. Let us estimate the region of admissible frequencies Q for a tlame
with v = 2. According to the calculations Ty = 0.3 (at the leading boundary of the flame the completeness of
conversion o = 0.01, at the trailing front ¢ = 0.99); the characteristic value of the ratio ¢4y/u, = 600 for a
hydrocarbon—air mixture with an initial temperature of 373° K. Hence it follows that @ « 1.3~ 10%; with
good approximation we have Q = 108,

4, Let us examine the effect of the physicochemical parameters on the frequency characteristics of
flames having a second-order reaction. The form of the frequency characteristics depends mainly on the
dimensionless parameters

Qo = T?O/TJ.IO' g0 = E | RTy, %y = (Tyo — T2) E/ RT:

They cannot vary independently of one another. Therefore it is more convenient to analyze the de-
pendence on the following dimensional parameters: the temperaturc of the initial mixture Ty, the calorific
effect of the reaction Q =cp(Ty—Tyg)/(1 =hyy), the activation energy E, and the composition of the mixture
or the initial completeness of conversion hy,.
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Fig. 3

So/S 2 Ret Let us examine the effect of these parameters separately,
; R considering the remaining dimensional parameters as constant.
170 = = “‘"J. Let us select the flame front with the parameters taken in Part 3
A A N S A S as the initial, later called the standard, flame front. We will as-
K E : : sume the preexponential factor ki and the Lewis number Le to be
20 7 - v - identical for all the flames (Le = 1). An asterisk to the upper
=5 = — right of a character will mean that the value pertains to the stand-
"0 )i . ; I ard flame.
Amplitude —phase frequency characteristics of flames which
differ from the standard flame (curve V) by one of the parame-
i - ' ters arc presented in Fig. 3. The points on the curves are num-
Ju E——tT T _—‘[__‘ bered. Point 1 corresponds to the frequency Q =1, point 2 cor-
a1 o4 10 9.0 10 uw e* responds to 5, 3 to 10, 4 to 50, 5 to 100, 6 to 250, 7 to 500, and 8

to 1000. The same dimensional oscillation frequency f on these
curves corresponds to different values of Q: the connection be-
tween them is Q* =K, where K =ty/t*.

Fig. 4

A twofold decrease in activation energy (curve I) leads to a change in the dimensionless parameters
oy = 5.0, gy = 5.42, and $4; = —4.34 and to an increase in the integral rate of heat reclease Sy and the normal
velocity of flame propagation up. The results of numerical integration show that

Sy = 858o*, u, = 85u.*, u, = 4u,, K= 1800

A twofold increase in Q leads to an increase in the temperature of the combustion products Ty =
3360° K (curve II). The dimensionless parameters for such a flame are ¢y = 9.0, gy = 6.0, and $y; = —5.36;
for the integral rate of heat release and the normal velocity of flame propagation we obtain

So = 41.25¢*, u, — 20.6u,*, u, — 4.67u,, K — 162

A twofold increase in the temperature of the initial mixture (curve III) gives the following values of
the parameters:

@y = 3.0, go = 9.02, ¥,,= —6.03, S, = 7.285¢*, u, = 14.56u,*,
U, = Jugy, K == 2.57

It is scen from the equations and boundary conditions (2.12) that the frequency characteristic G(Q)
docs not depend on the average pressure and the initial completeness of conversion hy,. During the dilution
of the initial mixture by the combustion products its thermophysical properties, which affect G(Q), are
changed.

Let us assume that the mixing-in of the hot comhustion products takes place with the condition that
the total specific enthalpy w of the mixture remains constant, w =¢pTyy + Q(1 ~hyg) (curve 1V). Then, taking
hyp = 0.25, we obtain the increase in the initial temperature Ty = 2Ty*. The parameters of this flame are:

@y == 2.5, g, = 10.84, ¥,0= — 6.3, S, — 2.4880*, u, = 5.8u,*,
u, =31 uy, K = 6.27

If the cold combustion products are mixed in, the temperature of the-initial mixture does not change,
but the temperature of the combustion products drops becausc of the decrease in the caloricity of the mix-
ture (curve VI). Taking hy, = 0.25 we obtain Tqy = 1429° K. The dimensionless parameters of such a front
are o = 4.0, go = 12.2, and &4y ==10.15, and for S; and uy we obtain

Sy = 0.3580%, u, = 0.46u,*, u, = 3.1u,, K — 0.453
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If follows from Fig. 3 that variation in the physicochemical
parameters of the flame within wide limits does not lead to a
change in the overall form of the amplitude —phase frequency char-
acteristic. The: distribution- of the markings of frequency @ along
the curves presented confirms the conclusion that the dependence
of the amplitude and phasec characteristics on the frequency in-
creases with an increase in the modulus of the parameter .

nlE

5. The absolute values of the disturbances in the integral
rate of heat release are important for an analysis of the stability
Fig. 5 of combustion. Let us examine the effect of changes in the physi-
cochemical parameters on these values. The results of the ap-
propriate calculations are presented in Fig. 4, which permits a
comparison among the values of the disturbed integral rate of heat release for the flames examined above.
The value (8y/S;*)Re G is laid out along the ordinate. The ratio S;/S * is taken from the results of calcula-
tions for stationary fronts. The dimensionless frequencies calculated from the parameters of the standard
front are laid out along the abscissa. The conversion coefficients K presented above are used for the change
from the frequency Q to the frequency Q* (the designations of the curves in Figs. 4 and 5 are the same as
in Fig. 3). It is seen from Fig. 4 that the greatest response occurs for flames with a high velocity of propa-
gation. The responses of the flames under consideration calculated in the quasi-stationary approximation
(dashed lines) are also presented in this figure. For stationary flame propagation the equation

g.7 10 9 2*

So = Q10a0tty (5.1)

is valid, where Q, is the caloricity of the mixture and up is the normal velocity of propagation of the flame.
According to [7]

ot — ZV!XZDkiP‘l'E?' d— ]Lm)v—l '/ Tin v ( RTs2 ).,,,] ( E
"o p

p (T'2y — T10)"™* T /l E - iy -2

The values of up calculated from this equation agree well with experiment. We assume that Eq. (5.1)
is valid also for low frequencies 2. Then, varying Eq. (5.1) for S; over all the variables except the com-
pleteness of conversion hy,, using an adiabatic dependence betwecen the pressure, temperature, and density
for the initial mixture, and keeping in mind the equality between the temperature disturbances in the chem-
ical reaction zone with the temperature disturbances in the initial mixture for small Q@ [Eq. (3.1)],1.e., Ty' =
T,', we obtain the following equation for the frequency characteristic:

0oy - - 1—1 o _ENTy :
ReG(Q) 5T S (V+2 i m)n (5.3)

It is seen from Fig. 4 that the dashed lines calculated using this equation are located near the curves
obtained by numerical integration: at low frequencies Q the disturbances in the integral rate of heat release
can be determined with good accuracy on the basis of the quasi-stationary approximation.

Let us clarify the region of dimensional frequencies for which this approximation is valid. For this
one must know the characteristic time t;, which can be found from Eq. (2.3) if the preexponential factor k;
is known. We choose it in such a way that the calculated value of up coincides with the experimental ve-
locity of flame propagation U for the given parameters. From the results of the numerical integration we
have up = [ug and for the standard front = 3.66. We note that the value calculated for the standard front
practically coincides with the value of up determined from Eq. (5.2). From a comparison of Egs. (2.4) and
(5.2) we have up? = 2v! (Ty/T40)% "Puy2. Hence for the standard front up = 3.66u,.

Taking u, = U, for the determination of the dimensional frequency we obtain

f = (U‘z / 25!%1012) Q

where yyg =x10/Cppy is the thermal diffusivity coefficient of the initial mixture. For the standard flame
front with T4 = 373° K the propagation velocity U, in the case of a benzene —air mixture for example, is
60 cm/sec and yyy = 0.23 cm?/sec [8]. For these values we have f = 185Q* Hz.

The frequency dependence of the phase angle of the shift between the oscillations of the integral rate
of heat release and the pressure oscillations is shown in Fig. 5. It is seen that this angle does not exceed
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23°, so that the changes in the integral rate of heat release occur practically instantaneously with the pres-
sure changes.

For all the flames examined [Re G(§2) —Re G(0)]/Re G(0) =0.1 for 2=3 (see Fig. 3). Hence it follows
that in a wide region of frequencies '

0 << U2 20000

(depending on the parameters of the front f = 500-3000 Hz) the frequency characteristic can be calculated
with sufficient accuracy for estimates of the self-triggering of the oscillations from Eg. (5.3) which was ob-
tained in the quasi-stationary approximation.

The authors thank V. E. Doroshenko for attention to the work and discussions.
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